X-Ray Crystal Structures of μ_{4}-Chloro-\{tris[trichloro(thiosemicarbazide)bismuth(III)] [tris(thiosemicarbazide)bismuth(III)] Hexachlorobismuthate(III) Chloride and catena- μ-Chloro-dichlorobis(ethylenethiourea)bismuth(III)

By Luigi P. Battaglia, Anna Bonamartini Corradi, Mario Nardelli,* and Maria E. Vidoni Tani, Istituto di Chimica Generale ed Inorganica, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., 43100 Parma, Italy

Abstract

The cryst l structures of the title complexes (1) and (2) have been determined by three-dimensional PattersonFourier and least-squares methods based on X-ray (Mo- K_{α}) diffraction data. Crystal data are: (1). a=14.056(5), $c=39.571(14) \AA, Z=9$, space group $R \overline{3}, R 0.0740$; (2), $a=9.595(1), b=17.445(2), c=8.678(1) \AA, \beta=$ $96.72(1)^{\circ}, Z=4$, space group $C 2 / c, R 0.049$. The structure of (1) consists of an octahedral $\left[\mathrm{BiCl}_{6}\right]^{3-}$ anion, a chloride ion, and a tetramer $\left[\mathrm{Bi}_{4} \mathrm{Cl}_{10}(\mathrm{tsc})_{6}\right]^{2+}$ (tsc $=$ thiosemicarbazide). formed by an octahedral μ_{3}-chloro-tris[trichloro(thiosemicarbazide)bismuthate(III)] anion and a tris(thiosemicarbazide)bismuth (III) cation, in which the co-ordination of the metal is trigonal antiprismatic. In (2) the co-ordination at bismuth is octahedral involving two ethylenethiourea molecules and four chloride ions, two of them bridging adjacent bismuth atoms forming infinite zigzag chains running along [001].

Our previous studies on adducts of BiCl_{3} and thiourea ${ }^{\mathbf{1 , 2}}$ showed that bismuth can form anionic and cationic complexes present in the same crystals. A similar situation is now found in the adduct (1) which thiosemicarbazide (tsc) forms with BiCl_{3}, while in the ethylenethiourea (etu) adduct (2) polymer chains of $\mathrm{Bi}(\text { etu })_{2} \mathrm{Cl}_{3}$ complex molecules are formed. The crystal structures of these complexes are now described.

EXPERIMENTAL

The title complexes were prepared by mixing ethanolic solutions of the reactants in the molar ratio $\mathrm{BiCl}_{3}: \mathrm{tsc}(\mathrm{etu})=$ 1:2; (1) crystallizes as pale yellow thin tabular platelets, (2) gives yellow prisms. Both complexes decompose between 120 and $140{ }^{\circ} \mathrm{C}$ without melting [Found: C, 3.6; $\mathrm{H}, 1.5 ; \mathrm{Bi}, 46.8 ; \mathrm{N}, 12.5$. Calc. for (1): C, 3.7; H, 1.5; $\mathrm{Bi}, 47.8$; $\mathrm{N}, 12.8$. Found: $\mathrm{C}, 14.1 ; \mathrm{H}, 3.0 ; \mathrm{Bi}, 40.9$; $\mathrm{N}, 10.9$. Calc. for (2): $\mathrm{C}, 13.9 ; \mathrm{H}, 2.3 ; \mathrm{Bi}, 40.2 ; \mathrm{N}$, 10.8\%].

Cyystal Data.-Complex (1), $\mathrm{C}_{4} \mathrm{H}_{20} \mathrm{Bi}_{3} \mathrm{Cl}_{9} \mathrm{~N}_{12} \mathrm{~S}_{4}, \quad M=$ 1 310.7, Trigonal, $a=14.056(5), c=39.571(14) \AA, U=$ $6771(5) \AA^{3}, D_{\mathrm{m}}=2.86 \mathrm{~g} \mathrm{~cm}^{-3}, Z=9, D_{\mathrm{c}}=2.88 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=5$ 346, Mo- K_{α} radiation ($\lambda 0.71069 \AA$), $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $185.5 \mathrm{~cm}^{-1}$, space group $R \overline{3}$.
Complex (2), $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{BiCl}_{3} \mathrm{~N}_{4} \mathrm{~S}_{2}, \quad M=519.8$, Monoclinic, $a=9.595(1), b=17.445(2), c=8.678(1) \AA, \beta=96.72(1)^{\circ}$, $U=1442.6(3) \AA^{3}, D_{\mathrm{m}}=2.38 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, D_{\mathrm{c}}=2.39 \mathrm{~g}$ $\mathrm{cm}^{-3}, \quad F(000)=968, \quad \mathrm{Mo}-K_{\alpha}$ radiation ($\lambda 0.71069 \AA$), $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=130.1 \mathrm{~cm}^{-1}$, space group $C 2 / c$.
${ }^{1}$ L. P. Battaglia, A. Bonamartini Corradi, G. Pelizzi, and M. E. Vidoni Tani, Cryst. Struct. Comm., 1975, 4, 399.

For both comp xes, cell dimensions were determined first from rotatio and waicconberg photographs ($\mathrm{Cu}-K_{\alpha}$) and then refined by diffractometer measurements ($\mathrm{Mo}-K_{\alpha}$).

Intensity-data Collection.-A crystal of (1) ($0.05 \times 0.24 \times$ 0.38 mm) was aligned with the axis coincident with [010] on an automated Siemens AED single-crystal diffractometer. 6774 Reflections were collected using the $\omega-2 \theta$ scan technique in the interval $6<2 \theta<50^{\circ}$; of these, 3023 having $I<3 \sigma(I)$ were considered 'unobserved'. The remaining 3751 were used in the analysis after correction for Lorentz and polarization effects. The intensities of symmetry-equivalent reflections were averaged to give 1551 unique observations. For (2), 1602 reflections were collected in the range $6<2 \theta<54^{\circ}$ by the same technique for a crystal of dimensions $0.09 \times 0.19 \times 0.61 \mathrm{~mm}$; of these, 1391 for which $I<2 \sigma(I)$ were used in the crystal analysis after the usual data reduction. During data collection a standard reflection was measured every 20 reflections and its intensity was found to be constant in both cases. No correction for absorption was made. The absolute scale was obtained first by the Wilson method, then as a least-squares parameter.

Structure Analysis.-For both structures the bismuth atoms were located from three-dimensional Patterson maps and the positions of the other non-hydrogen atoms were determined by the heavy-atom technique. For (1), fullmatrix least-squares refinement of all the positional and thermal parameters (anisotropic for Bi, Cl, and S and isotropic for N and C , since anisotropic refinement of nitrogen and carbon did not improve the agreement between the
${ }^{2}$ L. P. Battaglia, A. Bonamartini Corradi, G. Pelizzi, and M. E. Vidoni Tani, J.C.S. Dalton, 1977, 1141.
observed and calculated structure factors) minimizing the function $\Sigma w|\Delta F|^{2}$ with unit weights converged to $R 0.074$. Three reflections, (009), (0015), and (0018), considered to be affected by extinction were excluded from the refinement. Refinement for (2) was by block-diagonal least squares with anisotropic thermal parameters down to R 0.049 . No attempts were made to locate the hydrogen atoms in either structure. Table 1 shows positional parameters for (1) and (2) respectively. The atomic scattering factors used were those of Cromer and Mann. ${ }^{3}$ All the calculations were performed on the Cyber 7600

Table 1
Final fractional co-ordinates $\left(\times 10^{4}\right.$ for Bi, Cl, and S ; $\times 10^{3}$ for N and C) with estimated standard deviations in parentheses

	x / a	y / b	z / c
(a) For (1)			
$\mathrm{Bi}(1)$	$-303(1)$	$1743(1)$	-2 305(1)
Bi(2)	0	0	- 3 405(1)
$\mathrm{Bi}(3)$	0	0	0
$\mathrm{Cl}(1)$	0	0	$-2617(5)$
$\mathrm{Cl}(2)$	$-314(10)$	$2138(9)$	-2950(4)
$\mathrm{Cl}(3)$	$-2343(9)$	5(9)	-2 318(4)
$\mathrm{Cl}(4)$	63(9)	$1784(11)$	$-1624(4)$
$\mathrm{Cl}(5)$	$1766(9)$	544(9)	377(4)
$\mathrm{Cl}(6)$	0	0	5000
S(1)	- 1417 (9)	2 737(9)	-2 209(4)
$\mathrm{S}(2)$	26(9)	$1436(9)$	-3841(3)
$\mathrm{N}(1)$	$111(3)$	375(3)	-221(1)
$\mathrm{N}(2)$	60(3)	440(3)	-208(1)
N(3)	$-77(3)$	471 (3)	- 199(1)
N(4)	179(3)	200(3)	-330(1)
N(5)	184(3)	287(3)	-351(1)
$\mathrm{N}(6)$	$115(4)$	356(4)	-388(1)
$\mathrm{C}(1)$	-40(4)	403(4)	- 208(1)
$\mathrm{C}(2)$	107(4)	268(4)	-372(1)
(b) For (2)			
Bi	0	$1067(1)$	2500
$\mathrm{Cl}(1)$	0	0	0
$\mathrm{Cl}(2)$	$2832(4)$	$1145(3)$	$2916(5)$
S	-19(4)	$2122(2)$	212(5)
$\mathrm{N}(1)$	51(2)	361 (1)	50(2)
$\mathrm{N}(2)$	203(1)	292(1)	201(2)
C(1)	90(2)	291(1)	96(2)
$\mathrm{C}(2)$	154(2)	420(1)	117(2)
$\mathrm{C}(3)$	252(2)	371(1)	234(2)

computer of the Centro di Calcolo Interuniversitario dell'Italia Nord-Orientale, Bologna using the SHELX system ${ }^{4}$ for (1) and programs written by Immirzi ${ }^{5}$ for (2). Observed and calculated structure factors with thermal parameters are available as Supplementary Publication No. SUP 22216 (20 pp.).*

DISCUSSION

$3 \mathrm{BiCl}_{3} \cdot \mathbf{4 t s c}$, (1).-The structure of $3 \mathrm{BiCl}_{3} \cdot \mathbf{4 t s c}$ consists of a $\left[\mathrm{Bi}_{4} \mathrm{Cl}_{10}(\mathrm{tsc})_{6}\right]^{2+}$ cation and a chloride ion both on the same three-fold axis, and an octahedral $\left[\mathrm{BiCl}_{6}\right]^{3-}$ anion at $0,0,0$ on a $\overline{3}$ axis (Figure 1). The cation is a tetramer formed by one chloride ion tetrahedrally surrounded by four bismuth atoms, three of which are symmetry related by the three-fold axis and the fourth lies on that axis. The $\mathrm{Bi}(2)-\mathrm{Cl}(1)$ bond (Table 2) is significantly longer than the other $\mathrm{Bi}-\mathrm{Cl}$ bonds, so the tetrahedron is elongated along the three-fold axis and the $\left[\mathrm{Bi}_{4}{ }^{-}\right.$ $\mathrm{Cl}_{10}(\mathrm{tsc})_{6}{ }^{2+}$ cation can be considered as formed by the

* For details see Notices to Authors No. 7, J.C.S. Dalton, 1977, Index issue.
interaction between a tris(thiosemicarbazide)bismuth(III) cation and a μ_{3}-chloro-tris[trichloro(thiosemicarbazide)bismuthate(III)] anion. In the anion the bismuth coordination is distorted octahedral and involves four chlorine atoms and one thiosemicarbazide molecule

Figure 1 Clinographic projection of complex (1)
forming a five-membered chelate ring via sulphur and the hydrazinic terminal nitrogen. The distortion of the octahedron surrounding $\mathrm{Bi}(1)$ is indicated by the values of the angles involving the cis atoms which range from 74.2 to 128.7° [the largest displacement from the theoretical value is shown by $\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(1)]$ and by the values of the angles involving the trans atoms (Table 2). A long contact ($3.40 \AA$) between $\mathrm{Bi}(1)$ and a $\mathrm{Cl}(3)$ ion belonging to an adjacent polyhedron complete
${ }^{3}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
${ }^{4}$ G. Sheldrick, 'SHELX System of Computing Programs,' University of Cambridge, 1976.

5 A. Immirzi, Ricerca Sci., 1967, 37, 743.
the co-ordination to give a distorted pentagonal bipyramid. In the tris(thiosemicarbazide) bismuth(III) cation the sulphur and the nitrogen atoms from the three co-ordinated thiosemicarbazide molecules are at the

Table 2
Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in (1) with estimated standard deviations in parentheses

$\mathrm{Bi}(1)-\mathrm{Cl}(1)$	2.96(1)	$\mathrm{Bi}(3)-\mathrm{Cl}(5)$	2.66(1)
$\mathrm{Bi}(1)-\mathrm{Cl}(2)$	2.61(2)	$\mathrm{S}(1)-\mathrm{C}(1)$	1.74(5)
$\mathrm{Bi}(1)-\mathrm{Cl}(3)$	2.68(1)	$\mathrm{C}(1)-\mathrm{N}(3)$	1.35(7)
$\mathrm{Bi}(1)-\mathrm{Cl}(4)$	2.74(2)	$\mathrm{C}(1)-\mathrm{N}(2)$	1.23(6)
$\mathrm{Bi}(1)-\mathrm{S}(1)$	2.60 (1)	$\mathrm{N}(2)-\mathrm{N}(1)$	1.50(6)
$\mathrm{Bi}(1)-\mathrm{N}(1)$	2.54(4)	$\mathrm{S}(2)-\mathrm{C}(2)$	1.70 (5)
$\mathrm{Bi}(2)-\mathrm{Cl}(1)$	3.12 (2)	$\mathrm{C}(2)-\mathrm{N}(5)$	1.27(6)
$\mathrm{Bi}(2)-\mathrm{S}(2)$	2.64 (1)	$\mathrm{C}(2)-\mathrm{N}(6)$	1.35(8)
$\mathrm{Bi}(2)-\mathrm{N}(4)$	2.71 (4)	$\mathrm{N}(4)-\mathrm{N}(5)$	1.46(9)
$\mathrm{Cl}(1)-\mathrm{Bi}(1)-\mathrm{N}(1)$	128.7(9)	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(3)$	80.5(4)
$\mathrm{Cl}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(2)$	77.7(5)	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(4)$	90.1 (5)
$\mathrm{Cl}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(3)$	76.6(3)	$\mathrm{Cl}(3)-\mathrm{Bi}(1)-\mathrm{Cl}(4)$	98.2(4)
$\mathrm{Cl}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(4)$	109.0(5)	$\mathrm{S}(2)-\mathrm{Bi}(2)-\mathrm{N}(4)$	70.2(9)
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{N}(1)$	89.4(9)	$\mathrm{N}(4)-\mathrm{Bi}(2)-\mathrm{N}\left(4^{i}\right){ }^{*}$	117(1)
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{S}(1)$	87.7(5)	$\mathrm{S}(2)-\mathrm{Bi}(2)-\mathrm{S}\left(2^{i}\right)$	82.0(4)
$\mathrm{Cl}(2)-\mathrm{Bi}(1)-\mathrm{Cl}(3)$	93.3(4)	$\mathrm{N}(4)-\mathrm{Bi}(2)-\mathrm{Cl}(1)$	80.8(8)
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{S}(1)$	74.2 (9)	$\mathrm{S}(2)-\mathrm{Bi}(2)-\mathrm{Cl}(1)$	$130.8(3)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{Cl}(4)$	78.4(9)	$\mathrm{Cl}(5)-\mathrm{Bi}(3)-\mathrm{Cl}\left(5^{i}\right)$	91.6(4)
$\mathrm{Bi}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	102(2)	$\mathrm{Bi}(2)-\mathrm{S}(2)-\mathrm{C}(2)$	106(2)
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	127(5)	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(5)$	127(6)
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(3)$	115(3)	$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(6)$	116 (3)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(3)$	118(5)	$\mathrm{N}(5)-\mathrm{C}(2)-\mathrm{N}(6)$	117(6)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{N}(1)$	123(5)	$\mathrm{C}(2)-\mathrm{N}(5)-\mathrm{N}(4)$	121(6)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{Bi}(1)$	112(2)	$\mathrm{N}(5)-\mathrm{N}(4)-\mathrm{Bi}(2)$	114(3)

vertices of a trigonal antiprism, $\operatorname{Bi}(2)$ being $0.44 \AA$ below the plane determined by the $N(4)$ atoms. The central bridging $\mathrm{Cl}(1)$ ion occupies a seventh co-ordination site along the line passing through the centre of the basal face determined by the sulphur atoms, so that the coordination polyhedron of $\mathrm{Bi}(2)$ can be considered as a monocapped trigonal antiprism.

The environment of $\mathrm{Bi}(3)$ which forms the $\left[\mathrm{BiCl}_{6}\right]^{3-}$ anion is a nearly regular octahedron with a three-fold axis and a symmetry centre, indicating that the lone pair on the metal atom has no stereochemical influence. The $\mathrm{Bi}-\mathrm{Cl}$ distances involving the bridging chloride ions are significantly longer than the others, as observed in other polynuclear bismuth complexes such as $\mathrm{BiCl}_{3} \cdot 7 \mathrm{tu}$ (tu $=$ thiourea) ${ }^{1}$ where a binuclear cation with two bridging chloride ions is present. The $\mathrm{Bi}-\mathrm{N}$ distances are also not all equal, that in $\left[\mathrm{BiCl}_{3}(\mu-\mathrm{Cl})(\mathrm{tsc})\right]^{-}$being shorter than that in $\left[\mathrm{Bi}(\mathrm{tsc})_{3}{ }^{3+}\right.$, which corresponds to a weak interaction; the differences can be attributed to the relevant steric hindrance the ligands exert in $\left[\mathrm{Bi}(\mathrm{tsc})_{3}{ }^{3+}\right.$. Bond distances and angles in the two crystallographically independent thiosemicarbazide molecules are in good agreement with those found in other thiosemicarbazide complexes, ${ }^{6,-11}$ in uncomplexed thiosemicarbazide, ${ }^{12,13}$ and in thiosemicarbazide hydrochloride, ${ }^{14}$ the thiourea
${ }^{6}$ G. Fava Gasparri, A. Mangia, A. Musatti, and M. Nardelli, Acta Cryst., 1968, B24, 367.
${ }^{7}$ L. Cavalca, M. Nardelli, and G. Branchi, Acta Cryst., 1960, 13, 688.
${ }^{8}{ }^{\text {L L. Cavalca, M. Nardelli, and G. Fava Gasparri, Acta Cryst., }}$ 1962, 15, 1139.
${ }^{\circ}$ ' R. Grønbaek and S. E. Rasmussen, Acta Chem. Scand., 1962, 16, 2325.
${ }_{10}$ R. Gronbaek, Acta Cryst., 1963, 18, A65.
moieties being planar within experimental error. Packing in the structure is determined by $\mathrm{N} \cdot \mathrm{Cl}$ contacts (Table 3) some of which can be interpreted as hydrogen bonds.

Table 3
Contacts less than $3.50 \AA$ for (1)

$\mathrm{N}(1) \cdots \mathrm{Cl}\left(4^{\mathrm{I}}\right)$	$3.30(4)$	$\mathrm{N}(5) \cdots \mathrm{Cl}\left(5^{\mathrm{VI}}\right)$	$3.40(9)$
$\mathrm{N}(1) \cdots \mathrm{Cl}\left(5^{\mathrm{II}}\right)$	$3.32(4)$	$\mathrm{N}(5) \cdots \mathrm{Cl}\left(5^{\mathrm{V}}\right)$	$3.47(8)$
$\mathrm{N}(2) \cdots \mathrm{Cl}\left(4^{\mathrm{III}}\right)$	$3.21(4)$	$\mathrm{N}(5) \cdots \mathrm{Cl}\left(2^{\mathrm{VI}}\right)$	$3.34(9)$
$\mathrm{N}(3) \cdots \mathrm{Cl}\left(4^{\mathrm{III}}\right)$	$3.31(5)$	$\mathrm{N}(6) \cdots \mathrm{Cl}\left(3^{\mathrm{VII}}\right)$	$3.41(5)$
$\mathrm{N}(3) \cdots \mathrm{Cl}\left(6^{\mathrm{IV}}\right)$	$3.37(4)$	$\mathrm{N}(6) \cdots \mathrm{Cl}\left(5^{\mathrm{I}}\right)$	$3.41(6)$
$\mathrm{N}(4) \cdots \mathrm{Cl}\left(2^{\mathrm{V}}\right)$	$3.40(4)$	$\mathrm{N}(6) \cdots \mathrm{Cl}\left(5^{\mathrm{V}}\right)$	$3.47(6)$

Roman numeral superscripts denote the following equivalent positions:
I $\frac{1}{3}-x, \frac{2}{3}-y,-\frac{1}{3}-z$
II $\frac{1}{3}-x+y, \frac{2}{3}-x,-\frac{1}{3}+z$
III $\frac{1}{3}+x-y, \frac{2}{3}+x,-\frac{1}{3}-z$
IV $-\frac{1}{3}-y, \frac{1}{3}+x-y,-\frac{2}{3}+z$
V $\frac{1}{3}+y, \frac{2}{3}-x+y,-\frac{1}{3}-z$
VI $\frac{2}{3}+x-y, \frac{1}{3}+x,-\frac{2}{3}-z$
VII $-\frac{1}{3}-x, \frac{1}{3}-y,-\frac{2}{3}-z$

Table 4
Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in (2) with estimated standard deviations in parentheses

$\mathrm{Bi}-\mathrm{Cl}(1)$	$2.859(2)$	$\mathrm{C}(1)-\mathrm{N}(2)$	$1.33(2)$
$\mathrm{Bi}-\mathrm{Cl}(2)$	$2.703(4)$	$\mathrm{N}(1)-\mathrm{C}(2)$	$1.50(2)$
$\mathrm{Bi}-\mathrm{S}$	$2.706(5)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.48(2)$
$\mathrm{S}-\mathrm{C}(1)$	$1.72(1)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.56(3)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.32(2)$		
$\mathrm{Cl}(1)-\mathrm{Bi}-\mathrm{Cl}\left(1{ }^{i}\right)^{*}$	$98.7(1)$	$\mathrm{S}-\mathrm{Bi}-\mathrm{S}{ }^{i}$	$94.3(1)$
$\mathrm{Cl}(1)-\mathrm{Bi}-\mathrm{Cl}(2)$	$92.6(1)$	$\mathrm{Bi}-\mathrm{S}-\mathrm{C}(1)$	$108.0(6)$
$\mathrm{Cl}(1)-\mathrm{Bi}-\mathrm{Cl}\left(2^{i}\right)$	$91.2(1)$	$\mathrm{S}-\mathrm{C}(1)-\mathrm{N}(1)$	$120(1)$
$\mathrm{Cl}(1)-\mathrm{Bi}-\mathrm{S}$	$83.5(1)$	$\mathrm{S}-\mathrm{C}(1)-\mathrm{N}(2)$	$127(1)$
$\mathrm{Cl}(1)-\mathrm{Bi}-\mathrm{S} \mathrm{S}^{i}$	$177.7(1)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$112(1)$
$\mathrm{Cl}(2)-\mathrm{Bi}-\mathrm{Cl}\left(2^{i}\right)$	$174.2(2)$	$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$111(1)$
$\mathrm{Cl}(2)-\mathrm{Bi}-\mathrm{S}$	$89.1(1)$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	$104(1)$
$\mathrm{Cl}(2)-\mathrm{Bi}-\mathrm{S}{ }^{i}$	$87.0(1)$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$101(1)$
	$* i=\bar{x}, y, \frac{1}{2}-z$.		

$\mathrm{BiCl}_{3} \cdot 2 \mathrm{etu}$, (2).-In $\mathrm{BiCl}_{3} \cdot 2 \mathrm{etu}$ the co-ordination at bismuth, which lies on a two-fold axis, is slightly distorted octahedral and involves two ethylenethiourea molecules co-ordinating through sulphur and four chloride ions, two of which are on a symmetry centre. The distortion of the octahedron is not very severe as indicated by the angles involving the cis atoms (83.5$98.7^{\circ}$) and by the trans angles (177.7 and 174.2°). No stereochemical influence of the Bi lone pair is observed. The $\mathrm{Cl}(\mathbf{l})$ chloride ion, which lies on a symmetry centre, bridges two adjacent bismuth atoms, so that the coordination polyhedra, sharing vertices, form infinite zigzag chains running along [001]. This arrangement resembles that found in bis(piperidinium) pentabromobismuthate(III). ${ }^{15}$ On the other hand, in 2-methylpyridinium tetrabromo- and tetraiodo-bismuthate(III) ${ }^{16}$ there are infinite chains of octahedra sharing edges.

11 A. Chiesi Villa, A. Gaetani Manfredotti, and C. Guastini, Cryst. Struct. Comm., 1972, 1, 125.
${ }_{12}$ G. D. Andreetti, P. Domiano, G. Fava Gasparri, M. Nardelli, and P. Sgarabotto, Acta Cryst., 1970, B26, 1005.
${ }_{13}$ F. Hansen and R. Grønbaek Hazell, Acta Chem. Scand., 1969, 23, 1359.
${ }^{14}$ L. Coghi, A. M. Manotti Lanfredi, and A. Tiripicchio, J.C.S. Perkin II, 1976, 1808.
${ }^{15}$ W. G. McPherson and L. A. Meyers, J. Phys. Chem., 1968, 72, 532.
${ }_{16}$ B. K. Robertson, W. G. McPherson, and E. A. Meyers, J. Phys. Chem., 1967, 71, 3531.

Table 5
$\mathrm{Bi}-\mathrm{Cl}$ and $\mathrm{Bi}-\mathrm{S}$ distances (\AA) in bismuth(III) compounds. Those marked with an asterisk involve bridging chloride

	$\xrightarrow{\mathrm{Bi}-\mathrm{Cl}}$		$\underbrace{\mathrm{Bi}-\mathrm{S}}$	
$3 \mathrm{BiCl}_{3} \cdot \mathbf{4 S C}\left(\mathrm{NH}_{2}\right) \mathrm{NHNH}_{2}{ }^{\text {a }}$	2.61 (2)	2.74(2)	2.60(1)	
	2.66 (1)	2.96 (1) *	2.64(1)	
	2.68(1)	3.12(2)*		
$\mathrm{BiCl}_{3} \cdot 2 \mathrm{SC}\left(\mathrm{NHCH}_{2}\right)_{2}{ }^{\text {a }}$	$2.703(5)$		2.706(4)	
	2.859(2)*			
$3 \mathrm{BiCl}_{3} \cdot \mathbf{7 S C}\left(\mathrm{NH}_{2}\right)_{2}{ }^{\text {b }}$	2.677(10)	2.763(10)	2.680(6)	2.793(10)
	2.709 (6)	2.934(6) *	2.700 (6)	
	$2.710(9)$	$2.939(6){ }^{*}$	2.763(10)	
$\mathrm{BiCl}_{3} \cdot 3 \mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}{ }^{\text {c }}$	$2.714(8)$		2.714 (8)	
	$2.728(3)$		2.848(4)	
$\begin{aligned} & \mathrm{BiPh}\left(\mathrm{ONC}_{5} \mathrm{H}_{4} \mathrm{~S}_{2}{ }_{2}^{d}\right. \\ & \mathrm{BiCl}_{3}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NHC}_{4} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{OCH}_{3}\right)_{3}{ }^{e} \\ & \mathrm{BiPh}_{3} \mathrm{Cl}_{2}{ }^{5} \end{aligned}$			$2.635(9)$	$2.712(6)$
	$2.529(8)$			
	$\begin{aligned} & 2.530(17) \\ & 2.560(17) \end{aligned}$	$\begin{aligned} & 2.579(17) \\ & 2.615(17) \end{aligned}$		
$\mathrm{Bi}\left[\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{2}\right]_{3}{ }^{g}$			2.690(6)	2.858(6)
			$2.702(6)$	$2.878(6)$
			$2.714(6)$	2.886(6)
$\mathrm{Bi}_{12} \mathrm{Cl}_{14}\left(\mathrm{BiCl}_{1.167}\right)^{\boldsymbol{h}}$				
	2.666(35)	$2.775(21)$		
	$2.730(34)$	2.865(18)		
	2.743 (37)	2.870 (31)		

${ }^{a}$ Present work. b Ref. 1. © Ref. 2. a J. D. Curry and R. J. Jandacek, J.C.S. Dalton, 1972, 1120. e M. B. Ferrari, L. C. Capacchi, L. Cavalca, and G. F. Gasparri, Acta Cryst., 1972, B28, 1169. f D. M. Hawley and G. Ferguson, J. Chem. Soc. (A), 1968, $2539 . \quad{ }^{\prime}$ S. L. Lawton, C. J. Fuhrmeister, R. G. Haas, C. S. Jarman, jun., and F. G. Lohmeyer, Inorg. Chem., 1974, 13, 135. h A. Hershaft and J. D. Corbett, Inovg. Chem., 1963, $2,979$.

Figure 2 Clinographic projection of complex (2)

Bond distances and angles are in Table 4, and in Table $5 \mathrm{Bi}-\mathrm{Cl}$ and $\mathrm{Bi}-\mathrm{S}$ distances in some bismuth compounds are compared. As observed for structure (1), the $\mathrm{Bi}-\mathrm{Cl}$ distance involving the bridging chlorine in (2) is also significantly longer than the others. The interatomic distances in the ethylenethiourea molecule agree reasonably well with those found in other etu complexes ${ }^{17-20}$ and in etu itself. ${ }^{21}$ The orientation of the etu molecules is determined by the interaction
${ }^{17}$ L. P. Battaglia, A. Bonamartini Corradi, M. Nardelli, and M. E. Vidoni Tani, J.C.S. Dalton, 1976, 143.
${ }^{18}$ M. Nardelli, G. Fava, A. Musatti, and A. Manfredotti, Acta Cryst., 1966, 21, 910.
$\mathrm{N}(2) \cdots \mathrm{Cl}(2)(3.26 \AA)$ which probably involves the hydrogen atom attached to $\mathrm{N}(2)$.

Packing of the chains is mainly determined by the $\mathrm{Cl}(2) \cdots \mathrm{HN}\left(1^{i}\right) \quad\left(3.24 \AA ; \quad i=\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ contact which can be considered as a hydrogen bond $\left[\mathrm{Cl}(2)-\mathrm{N}\left(1^{i}\right)-\mathrm{C}\left(2^{i}\right) 127.5, \mathrm{Cl}(2)-\mathrm{N}\left(1^{i}\right)-\mathrm{C}\left(1^{i}\right) 120.4^{\circ}\right]$.
[7/1364 Received, 27th July, 1977]
${ }^{19}$ L. Cavalca, M. Nardelli, and G. Fava, Acta Cryst., 1960, 13, 125.
${ }_{20}$ M. S. Weininger, G. W. Hunt, and E. L. Amma, J.C.S. Chem. Comm., 1972, 1140.
${ }^{21}$ P. Wheatley, Acta Cryst., 1953, 6, 369.

